If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+x^2=168
We move all terms to the left:
4x+x^2-(168)=0
a = 1; b = 4; c = -168;
Δ = b2-4ac
Δ = 42-4·1·(-168)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{43}}{2*1}=\frac{-4-4\sqrt{43}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{43}}{2*1}=\frac{-4+4\sqrt{43}}{2} $
| (7x+6)/3=-3 | | -4*(3-x)+5x=15 | | 12h−10h+4h−3=3 | | 5x+9=4(2x–3) | | 1/2(10s+14•4)=48 | | -5+3x=22+-6x | | 5(i+60)=300 | | 6p+3p-5p+3p-6p=19 | | 5x-20=-x/3+38 | | w-4/5=(8+2/3) | | 9a+10=1214 | | 8x-12+3x+5=360 | | 3x–2–x=14 | | 3x+2x+x=3+2+1 | | 2x+8=3,5 | | -x-x-x-x=-x-69 | | 3^x=30^40 | | -x=-11+16 | | 8z–1–=11 | | 2x−7=7x−17 | | 140=7w | | 134+z=22 | | -12=11x+x+48 | | 3^2x=30^40 | | 710=x-3 | | 5n=10(2( | | 18y-41=4 | | P=7b+15 | | 6x^2=-21x+12 | | 7a/8=6a-369 | | 1-r=5r-5r | | (v)(v)=(2v-15)(v+4) |